Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.030
Filtrar
1.
Biophys Chem ; 310: 107239, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38663121

RESUMO

Parkinson's disease (PD) is one of many neurodegenerative diseases. The protein associated with PD is α-synuclein (AS). Aggregation of AS protein into oligomers, protofilaments, and finally to fibrils yields to the development of PD. The aggregation process of AS leads to the formation of polymorphic AS fibrils. Herein, we compared four polymorphic full-length AS1-140 fibrils, using extensive computational tools. The main conclusion of this study emphasizes the role of the structurally packed non-amyloid component (NAC) core domain in AS fibrils. Polymorphic AS fibrils that presented a packed NAC core domain, exhibited more ß-sheets and fewer fluctuations in the NAC domain. Hence, these AS fibrils are more stable and populated than the AS fibrils, by which the NAC domains are more exposed, more fluctuate and less packed in the fibrillary structure. Therefore, this study emphasizes the importance of the NAC domain packing in the morphology of AS fibrils. The results obtained in this study will initiate future studies to develop compounds to prevent and inhibit AS aggregation.

2.
J Chem Neuroanat ; 138: 102420, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626816

RESUMO

Protein aggregation is a pathological feature in various neurodegenerative diseases and is thought to play a crucial role in the onset and progression of neurological disorders. This pathological phenomenon has attracted increasing attention from researchers, but the underlying mechanism has not been fully elucidated yet. Researchers are increasingly interested in identifying chemicals or methods that can effectively detect protein aggregation or maintain protein stability to prevent aggregation formation. To date, several methods are available for detecting protein aggregates, including fluorescence correlation spectroscopy, electron microscopy, and molecular detection methods. Unfortunately, there is still a lack of methods to observe protein aggregation in situ under a microscope. This article reviews the two main aspects of protein aggregation: the mechanisms and detection methods of protein aggregation. The aim is to provide clues for the development of new methods to study this pathological phenomenon.

3.
ACS Chem Neurosci ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640082

RESUMO

For many chaperones, a propensity to self-assemble correlates with function. The highly efficient amyloid suppressing chaperone DNAJB6b has been reported to oligomerize. A key question is whether the DNAJB6b self-assemblies or their subunits are active units in the suppression of amyloid formation. Here, we address this question using a nonmodified chaperone. We use the well-established aggregation kinetics of the amyloid ß 42 peptide (Aß42) as a readout of the amyloid suppression efficiency. The experimental setup relies on the slow dissociation of DNAJB6b assemblies upon dilution. We find that the dissociation of the chaperone assemblies correlates with its ability to suppress fibril formation. Thus, the data show that the subunits of DNAJB6b assemblies rather than the large oligomers are the active forms in amyloid suppression. Our results provide insights into how DNAJB6b operates as a chaperone and illustrate the importance of established assembly equilibria and dissociation rates for the design of kinetic experiments.

4.
bioRxiv ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38559069

RESUMO

Aggregation of the amyloid ß (Aß) peptide into fibrils represents one of the major biochemical pathways underlying the development of Alzheimer's disease (AD). Extensive studies have been carried out to understand the role of fibrillar seeds on the overall kinetics of amyloid aggregation. However, the precise effect of seeds that are structurally or sequentially different from Aß on the structure of the resulting amyloid aggregates is yet to be fully understood. In this work, we use nanoscale infrared spectroscopy to probe the spectral facets of individual aggregates formed by aggregating Aß42 with antiparallel fibrillar seeds of Aß (16-22) and E22Q Aß (1-40) Dutch mutant and demonstrate that Aß can form heterotypic or mixed polymorphs that deviate significantly from its expected parallel cross ß structure. We further show that formation of heterotypic aggregates is not limited to coaggregation of Aß and its isomers, and that the former can form heterotypic fibrils with alpha synuclein and brain protein lysates. These findings highlight the complexity of Aß aggregation in AD and underscore the need to explore how Aß interacts with other brain components, which is crucial for developing better therapeutic strategies for AD.

5.
Chembiochem ; : e202400088, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572930

RESUMO

Antimicrobial peptides (AMPs) are of growing interest as potential candidates that may offer more resilience against antimicrobial resistance than traditional antibiotic agents. In this article, we perform the first in silico study of the synthetic ß sheet-forming AMP GL13K. Through atomistic simulations of single and multi-peptide systems under different conditions, we are able to shine a light on the short timescales of early aggregation. We find that isolated peptide conformations are primarily dictated by sequence rather than charge, whereas changing charge has a significant impact on the conformational free energy landscape of multi-peptide systems. We demonstrate that the loss of charge-charge repulsion is a sufficient minimal model for experimentally observed aggregation. Overall, our work explores the molecular biophysical underpinnings of the first stages of aggregation of a unique AMP, laying necessary groundwork for its further development as an antibiotic candidate.

6.
Protein Pept Lett ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38661034

RESUMO

BACKGROUND: The most fatal form of Visceral leishmaniasis or kala-azar is caused by the intracellular protozoan parasite Leishmania donovani. The life cycle and the infection pathway of the parasite are regulated by the small GTPase family of Rab proteins. The involvement of Rab proteins in neurodegenerative amyloidosis is implicated in protein misfolding, secretion abnormalities and dysregulation. The inter and intra-cellular shuttlings of Rab proteins are proposed to be aggregation-prone. However, the biophysical unfolding and aggregation of protozoan Rab proteins is limited. Understanding the aggregation mechanisms of Rab protein will determine their physical impact on the disease pathogenesis and individual health. OBJECTIVE: This work investigates the acidic pH-induced unfolding and aggregation of a recombinant Rab2 protein from L. donovani (rLdRab2) using multi-spectroscopic probes. METHODS: The acidic unfolding of rLdRab2 induced at acidic pH is characterised by intrinsic fluorescence and ANS assay, while aggregation is determined by Thioflavin-T and 90° light scattering assay. Circular dichroism determined the secondary structure of monomers and aggregates. The aggregate morphology was imaged by transmission electron microscopy. RESULTS: rLdRab2 was modelled to be a Rab2 isoform with loose globular packing. The acidinduced unfolding of the protein is a plausible non-two-state process. At pH 2.0, a partially folded intermediate (PFI) state characterised by ~ 30 % structural loss and exposed hydrophobic core was found to accumulate. The PFI state slowly converted into well-developed protofibrils at high protein concentrations demonstrating its amyloidogenic nature. The native state of the protein was also observed to be aggregation-prone at high protein concentrations. However, it formed amorphous aggregation instead of fibrils. CONCLUSION: To our knowledge, this is the first study to report in vitro amyloid-like behaviour of Rab proteins in L donovani. This study provides a novel opportunity to understand the complete biophysical characteristics of Rab2 protein of the lower eukaryote, L. donovani.

7.
Prion ; 18(1): 68-71, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38651736

RESUMO

The history of human prion diseases began with the original description, by Hans Gerhard Creutzfeldt and by Alfons Maria Jakob, of patients with a severe brain disease that included speech abnormalities, confusion, and myoclonus, in a disease that was then named Creutzfeldt Jakob disease (CJD). Later, in Papua New Guinea, a disease characterized by trembling was identified, and given the name "Kuru". Neuropathological examination of the brains from CJD and Kuru patients, and of brains of sheep with scrapie disease revealed significant similarities and suggested a possible common mode of infection that, at the time, was thought to derive from an unknown virus that caused slow infections. John Stanley Griffith hypothesized that the agent causing these diseases was "probably a protein without nucleic acid" and, in 1982, Stanley Prusiner reported the identification of a proteinaceous infectious particle (coining the term prion) that was resistant to inactivation methods that were at the time standard for nucleic acids, and identified PrP as the major protein component of the infectious agent in scrapie and in Creutzfeldt-Jakob disease, classifying this also as a prion disease. Interestingly, the prion concept had been previously expanded to yeast proteins capable of replicating their conformation, seeding their own aggregation and transmitting phenotypic information. The prion concept has been more recently expanded to refer to misfolded proteins that are capable of converting a normal form of a protein into an abnormal form. The quest to understand and treat prion diseases has united a specific research community around the topic, and regular meetings (Prion Meetings) have taken place over the years to enable discussions, train junior researchers, and inspire research in the field.


Assuntos
Doenças Priônicas , Príons , Humanos , Doenças Priônicas/patologia , Doenças Priônicas/metabolismo , Animais , Príons/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Síndrome de Creutzfeldt-Jakob/metabolismo , Kuru/patologia
8.
Biochem Soc Trans ; 52(2): 761-771, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38600027

RESUMO

Recent developments in atomic force microscopy (AFM) image analysis have made three-dimensional (3D) structural reconstruction of individual particles observed on 2D AFM height images a reality. Here, we review the emerging contact point reconstruction AFM (CPR-AFM) methodology and its application in 3D reconstruction of individual helical amyloid filaments in the context of the challenges presented by the structural analysis of highly polymorphous and heterogeneous amyloid protein structures. How individual particle-level structural analysis can contribute to resolving the amyloid polymorph structure-function relationships, the environmental triggers leading to protein misfolding and aggregation into amyloid species, the influences by the conditions or minor fluctuations in the initial monomeric protein structure on the speed of amyloid fibril formation, and the extent of the different types of amyloid species that can be formed, are discussed. Future perspectives in the capabilities of AFM-based 3D structural reconstruction methodology exploiting synergies with other recent AFM technology advances are also discussed to highlight the potential of AFM as an emergent general, accessible and multimodal structural biology tool for the analysis of individual biomolecules.


Assuntos
Amiloide , Imageamento Tridimensional , Microscopia de Força Atômica , Microscopia de Força Atômica/métodos , Imageamento Tridimensional/métodos , Humanos , Amiloide/química , Amiloide/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Conformação Proteica , Dobramento de Proteína
9.
Food Chem ; 449: 139255, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38583400

RESUMO

Effects of association between high-acyl gellan gum and whey protein on heat-induced aggregation and foaming properties of aggregates were assessed in aqueous suspensions. Associative complexes were identified by turbidity and colloidal charge below pH 6, and a balance of charge in the complexes was achieved at pH 5 with a 5:1 protein:polysaccharide ratio. As gellan gum content increased, size of aggregates formed by heating at pH 5 decreased (>1000 nm to 200-300 nm). Microscopy showed polysaccharide chains adhered to spherical aggregates at pH 5 and 6. Gellan gum added to protein before heating did not increase foam volume yet doubled foam half-life at pH 5 when used at a 2:1 protein-to-polysaccharide ratio. Microscopy showed that protein aggregates with attached gellan gum were present in drained foams. These findings indicate that gellan gum improves foam stability of heated whey protein at pH 5 by reducing aggregate size and adhering to aggregates.

10.
Biochem Soc Trans ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666616

RESUMO

Neurodegenerative diseases, such as Alzheimer's and Parkinson's, share a common pathological feature of amyloid structure accumulation. However, the structure-function relationship between these well-ordered, ß-sheet-rich, filamentous protein deposits and disease etiology remains to be defined. Recently, an emerging hypothesis has linked phase separation, a process involved in the formation of protein condensates, to amyloid formation, suggesting that liquid protein droplets serve as loci for amyloid initiation. To elucidate how these processes contribute to disease progression, tools that can directly report on protein secondary structural changes are needed. Here, we review recent studies that have demonstrated Raman spectroscopy as a powerful vibrational technique for interrogating amyloid structures; one that offers sensitivity from the global secondary structural level to specific residues. This probe-free technique is further enhanced via coupling to a microscope, which affords structural data with spatial resolution, known as Raman spectral imaging (RSI). In vitro and in cellulo applications of RSI are discussed, highlighting studies of protein droplet aging, cellular internalization of fibrils, and Raman imaging of intracellular water. Collectively, utilization of the myriad Raman spectroscopic methods will contribute to a deeper understanding of protein conformational dynamics in the complex cellular milieu and offer potential clinical diagnostic capabilities for protein misfolding and aggregation processes in disease states.

11.
Life Sci ; 342: 122537, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428569

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative condition that primarily affects motor function and is caused by a gradual decline of dopaminergic neurons in the brain's substantia pars compacta (Snpc) region. Multiple molecular pathways are involved in the pathogenesis, which results in impaired cellular functions and neuronal degeneration. However, the role of sirtuins, a type of NAD+-dependent deacetylase, in the pathogenesis of Parkinson's disease has recently been investigated. Sirtuins are essential for preserving cellular homeostasis because they control a number of biological processes, such as metabolism, apoptosis, and DNA repair. This review shed lights on the dysregulation of sirtuin activity in PD, highlighting the role that acetylation and deacetylation processes play in the development of the disease. Key regulators of protein acetylation, sirtuins have been found to be involved in the aberrant acetylation of vital substrates linked to PD pathology when their balance is out of balance. The hallmark characteristics of PD such as neuroinflammation, oxidative stress, and mitochondrial dysfunction have all been linked to the dysregulation of sirtuin expression and activity. Furthermore, we have also explored how the modulators of sirtuins can be a promising therapeutic intervention in the treatment of PD.


Assuntos
Doença de Parkinson , Sirtuínas , Humanos , Doença de Parkinson/tratamento farmacológico , Sirtuínas/metabolismo , Acetilação , Processamento de Proteína Pós-Traducional , Neurônios Dopaminérgicos/metabolismo
12.
Acta Ophthalmol ; 102 Suppl 282: 3-53, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38467968

RESUMO

Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase ß. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1ß in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.


Assuntos
Atrofia Geográfica , Degeneração Macular , Humanos , Animais , Camundongos , Lactente , Inflamassomos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Epitélio Pigmentado da Retina , Trombina , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Qualidade de Vida , Degeneração Macular/genética , Degeneração Macular/metabolismo , Estresse Oxidativo , Biomarcadores/metabolismo , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo , Pigmentos da Retina/farmacologia
13.
Front Cell Neurosci ; 18: 1353542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469354

RESUMO

Introduction: Loss of proteasome function, proteinopathy, and proteotoxicity may cause neurodegeneration across the human lifespan in several forms of brain injury and disease. Drugs that activate brain proteasomes in vivo could thus have a broad therapeutic impact in neurology. Methods: Using pigs, a clinically relevant large animal with a functionally compartmental gyrencephalic cerebral cortex, we evaluated the localization and biochemical activity of brain proteasomes and tested the ability of small molecules to activate brain proteasomes. Results: By Western blotting, proteasome protein subunit PSMB5 and PSMA3 levels were similar in different pig brain regions. Immunohistochemistry for PSMB5 showed localization in the cytoplasm (diffuse and particulate) and nucleus (cytoplasm < nucleus). Some PSMB5 immunoreactivity was colocalized with mitochondrial (voltage-gated anion channel and cyclophilin D) and cell death (Aven) proteins in the neuronal soma and neuropil in the neocortex of pig and human brains. In the nucleus, PSMB5 immunoreactivity was diffuse, particulate, and clustered, including perinucleolar decorations. By fluorogenic assay, proteasome chymotrypsin-like activities (CTL) in crude tissue soluble fractions were generally similar within eight different pig brain regions. Proteasome CTL activity in the hippocampus was correlated with activity in nasal mucosa biopsies. In pilot analyses of subcellular fractions of pig cerebral cortex, proteasome CTL activity was highest in the cytosol and then ~50% lower in nuclear fractions; ~15-20% of total CTL activity was in pure mitochondrial fractions. With in-gel activity assay, 26S-singly and -doubly capped proteasomes were the dominant forms in the pig cerebral cortex. With a novel in situ histochemical activity assay, MG132-inhibitable proteasome CTL activity was localized to the neuropil, as a mosaic, and to cell bodies, nuclei, and centrosome-like perinuclear satellites. In piglets treated intravenously with pyrazolone derivative and chlorpromazine over 24 h, brain proteasome CTL activity was modestly increased. Discussion: This study shows that the proteasome in the pig brain has relative regional uniformity, prominent nuclear and perinuclear presence with catalytic activity, a mitochondrial association with activity, 26S-single cap dominance, and indications from small molecule systemic administration of pyrazolone derivative and chlorpromazine that brain proteasome function appears safely activable.

14.
J Pharm Sci ; 113(5): 1177-1189, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484874

RESUMO

Subvisible particles may be encountered throughout the processing of therapeutic protein formulations. Flow imaging microscopy (FIM) and backgrounded membrane imaging (BMI) are techniques commonly used to record digital images of these particles, which may be analyzed to provide particle size distributions, concentrations, and identities. Although both techniques record digital images of particles within a sample, FIM analyzes particles suspended in flowing liquids, whereas BMI records images of dry particles after collection by filtration onto a membrane. This study compared the performance of convolutional neural networks (CNNs) in classifying images of subvisible particles recorded by both imaging techniques. Initially, CNNs trained on BMI images appeared to provide higher classification accuracies than those trained on FIM images. However, attribution analyses showed that classification predictions from CNNs trained on BMI images relied on features contributed by the membrane background, whereas predictions from CNNs trained on FIM features were based largely on features of the particles. Segmenting images to minimize the contributions from image backgrounds reduced the apparent accuracy of CNNs trained on BMI images but caused minimal reduction in the accuracy of CNNs trained on FIM images. Thus, the seemingly superior classification accuracy of CNNs trained on BMI images compared to FIM images was an artifact caused by subtle features in the backgrounds of BMI images. Our findings emphasize the importance of examining machine learning algorithms for image analysis with attribution methods to ensure the robustness of trained models and to mitigate potential influence of artifacts within training data sets.


Assuntos
Aprendizado de Máquina , Microscopia , Redes Neurais de Computação , Algoritmos , Viés
15.
Pharm Res ; 41(4): 651-672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519817

RESUMO

BACKGROUND AND PURPOSE: There is concern that subvisible aggregates in biotherapeutic drug products pose a risk to patient safety. We investigated the threshold of biotherapeutic aggregates needed to induce immunogenic responses. METHODS AND RESULTS: Highly aggregated samples were tested in cell-based assays and induced cellular responses in a manner that depended on the number of particles. The threshold of immune activation varied by disease state (cancer, rheumatoid arthritis, allergy), concomitant therapies, and particle number. Compared to healthy donors, disease state patients showed an equal or lower response at the late phase (7 days), suggesting they may not have a higher risk of responding to aggregates. Xeno-het mice were used to assess the threshold of immune activation in vivo. Although highly aggregated samples (~ 1,600,000 particles/mL) induced a weak and transient immunogenic response in mice, a 100-fold dilution of this sample (~ 16,000 particles/mL) did not induce immunogenicity. To confirm this result, subvisible particles (up to ~ 18,000 particles/mL, containing aggregates and silicone oil droplets) produced under representative administration practices (created upon infusion of a drug product through an IV catheter) did not induce a response in cell-based assays or appear to increase the rate of adverse events or immunogenicity during phase 3 clinical trials. CONCLUSION: The ability of biotherapeutic aggregates to elicit an immune response in vitro, in vivo, and in the clinic depends on high numbers of particles. This suggests that there is a high threshold for aggregates to induce an immunogenic response which is well beyond that seen in standard biotherapeutic drug products.


Assuntos
Formação de Anticorpos , Humanos , Camundongos , Animais , Preparações Farmacêuticas
16.
Int J Pharm ; 654: 123950, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38430951

RESUMO

Despite intense efforts at the bench, the development of successful brain-targeting therapeutics to relieve malicious neural diseases remains primitive. The brain, being a beautifully intricate organ, consists of heterogeneous arrays of neuronal and glial cells. Primarily acting as the support system for neuronal functioning and maturation, glial cells have been observed to be engaged more apparently in the progression and worsening of various neural pathologies. The diseased state is often related to metabolic alterations in glial cells, thereby modulating their physiological homeostasis in conjunction with neuronal dysfunction. A plethora of data indicates the effect of oxidative stress, protein aggregation, and DNA damage in neuroglia impairments. Still, a deeper insight is needed to gain a conflict-free understanding in this arena. As a consequence, glial cells hold the potential to be identified as promising targets for novel therapeutic approaches aimed at brain protection. In this review, we describe the recent strides taken in the direction of understanding the impact of oxidative stress, protein aggregation, and DNA damage on neuroglia impairment and neuroglia-directed nanotherapeutic approaches to mitigate the burden of various neural disorders.


Assuntos
Neuroglia , Agregados Proteicos , Neurônios/patologia , Encéfalo
17.
Proc Natl Acad Sci U S A ; 121(14): e2313538121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527193

RESUMO

A major consequence of aging and stress, in yeast to humans, is an increased accumulation of protein aggregates at distinct sites within the cells. Using genetic screens, immunoelectron microscopy, and three-dimensional modeling in our efforts to elucidate the importance of aggregate annexation, we found that most aggregates in yeast accumulate near the surface of mitochondria. Further, we show that virus-like particles (VLPs), which are part of the retrotransposition cycle of Ty elements, are markedly enriched in these sites of protein aggregation. RNA interference-mediated silencing of Ty expression perturbed aggregate sequestration to mitochondria, reduced overall protein aggregation, mitigated toxicity of a Huntington's disease model, and expanded the replicative lifespan of yeast in a partially Hsp104-dependent manner. The results are in line with recent data demonstrating that VLPs might act as aging factors in mammals, including humans, and extend these findings by linking VLPs to a toxic accumulation of protein aggregates and raising the possibility that they might negatively influence neurological disease progression.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Animais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Agregados Proteicos , Longevidade , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicação do DNA , Mamíferos/metabolismo
18.
Antioxidants (Basel) ; 13(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38539796

RESUMO

Alzheimer's disease (AD) is the most common form of dementia. Given the link between oxidative stress and AD, many studies focus on the identification of natural antioxidants against AD. Although their antioxidant capacity is important, increasing data suggest that additional activities are related to their beneficial effects, including properties against amyloid beta (Aß) aggregation. Sideritis spp. (mountain tea) extracts possess not only antioxidant activity but also other bioactivities that confer neuroprotection. Although various Sideritis spp. extracts have been extensively studied, there are scarce data on S. clandestina subsp. peloponnesiaca (SCP) phytochemical composition and neuroprotective potential, while nothing is known of the responsible compounds. Given that SCP is a weaker antioxidant compared to other Sideritis spp., here, we investigated its potential beneficial properties against Aß aggregation. We characterized different SCP extracts and revealed their anti-aggregation activity by taking advantage of established C. elegans AD models. Importantly, we identified two pure compounds, namely, sideridiol and verbascoside, being responsible for the beneficial effects. Furthermore, we have revealed a potential anti-Aß aggregation mechanism for sideridiol. Our results support the use of mountain tea in the elderly against dementia and demonstrate the activity of sideridiol against Aß aggregation that could be exploited for drug development.

19.
Trends Neurosci ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38553385

RESUMO

A recent study by Kumar et al. identified several biological pathways that regulate the levels of endogenous alpha-synuclein (α-synuclein). They specifically highlighted the N-terminal acetylation (NTA) pathway as an important factor in maintaining the stability of endogenous α-synuclein, suggesting targeting the NTA pathway as a potential therapeutic approach.

20.
mBio ; 15(4): e0041924, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501920

RESUMO

The discovery of functional amyloids in bacteria dates back several decades, and our understanding of the Escherichia coli curli biogenesis system has gradually expanded over time. However, due to its high aggregation propensity and intrinsically disordered nature, CsgA, the main structural component of curli fibrils, has eluded comprehensive structural characterization. Recent advancements in cryo-electron microscopy (cryo-EM) offer a promising tool to achieve high-resolution structural insights into E. coli CsgA fibrils. In this study, we outline an approach to addressing the colloidal instability challenges associated with CsgA, achieved through engineering and electrostatic repulsion. Then, we present the cryo-EM structure of CsgA fibrils at 3.62 Å resolution. This structure provides new insights into the cross-ß structure of E. coli CsgA. Additionally, our study identifies two distinct spatial arrangements within several CsgA fibrils, a 2-CsgA-fibril pair and a 3-CsgA-fibril bundle, shedding light on the intricate hierarchy of the biofilm extracellular matrix and laying the foundation for precise manipulation of CsgA-derived biomaterials.IMPORTANCEThe visualization of the architecture of Escherichia coli CsgA amyloid fibril has been a longstanding research question, for which a high-resolution structure is still unavailable. CsgA serves as a major subunit of curli, the primary component of the extracellular matrix generated by bacteria. The support provided by this extracellular matrix enables bacterial biofilms to resist antibiotic treatment, significantly impacting human health. CsgA has been identified in members of Enterobacteriaceae, with pathogenic E. coli being the most well-known model system. Our novel insights into the structure of E. coli CsgA protofilaments form the basis for drug design targeting diseases associated with biofilms. Additionally, CsgA is widely researched in biomaterials due to its self-assembly characteristics. The resolved spatial arrangements of CsgA amyloids revealed in our study will further enhance the precision design of functional biomaterials. Therefore, our study uniquely contributes to the understanding of CsgA amyloids for both microbiology and material science.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Escherichia coli/química , Proteínas de Escherichia coli/química , Amiloide , Microscopia Crioeletrônica , Biofilmes , Materiais Biocompatíveis , Proteínas de Bactérias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...